46 research outputs found

    Comprehensive performance evaluation of coordinated development of industrial economy and its air pollution control

    No full text
    Exploring coordinated pathways that can promote not only the sustainable development of the industrial economy but also air quality is of great significance for the prevention and control of air pollution in China. Currently, the joint development pathways of the industrial economy-environment nexus remain unclear and poorly evaluated. In this study, we proposed a comprehensive performance evaluation combining objective and subjective weighting to identify industrial enterprises' economic-environment nexus benefits. It would be one of the most important steps to explore the coordinated pathways. Based on data envelopment analysis (DEA), the proposed method integrated with the index integration was used to evaluate the comprehensive performances of 41 industrial sectors in China's 13th five-year plan (2016–2020). Evaluation results showed that the comprehensive performances of the economy-environment nexus of the industrial sectors varied significantly, with the five-year average comprehensive technical efficiency (TE) of 0.11–1. Overall, the best two performances were realized by the industries of equipment manufacturing and living consumption, whereas the worst one belonged to the industry of bulk raw materials, with average comprehensive TE values of 0.50, 0.43, and 0.19, respectively. The results of the quantitative evaluation were consistent with those of the qualitative analysis in terms of the developmental status of the industrial sectors. According to the analyses of pure technical efficiency and scale effect, the proposed method identified the industrial sectors with the highest developmental value and with the highest need to control air pollution. Compared with those of the original DEA model, the results of the proposed method showed pronounced differences in terms of the performances of industrial sectors with high energy consumption and high particulate matter (PM) emissions and with low energy consumption and low PM emissions. The proposed evaluation method combining the weighting was suitable for identifying the comprehensive performance of the industrial economy-environment nexus and provides the basis for the prevention and control of air pollution

    Potential Risks of PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals from Inland and Marine Directions for a Marine Background Site in North China

    No full text
    Ambient PM2.5-bound ions, OC, EC, heavy metals (HMs), 18 polycyclic aromatic hydrocarbons (PAHs), 7 hopanes, and 29 n-alkanes were detected at Tuoji Island (TI), the only marine background atmospheric monitoring station in North China. The annual PM2.5 average concentration was 47 ± 31 μg m−3, and the average concentrations of the compositions in PM2.5 were higher in cold seasons than in warm seasons. The cancer and non-cancer risks of HMs and PAHs in cold seasons were also higher than in warm seasons. BaP, Ni, and As dominated the ∑HQ (hazard quotient) in cold seasons, while the non-carcinogenic risk in warm seasons was mainly dominated by Ni, Mn, and As. The ILCR (incremental lifetime cancer risk) values associated with Cr and As were higher in the cold season, while ILCR-Ni values were higher in the warm season. The backward trajectory was calculated to identify the potential directions of air mass at TI. Through the diagnostic ratios of organic and inorganic tracers, the sources of particulate matter in different directions were judged. It was found that ship emissions and sea salt were the main sources from marine directions, while coal combustion, vehicles emissions, industrial process, and secondary aerosols were the main source categories for inland directions. In addition, potential HM and PAH risks from inland and marine directions were explored. The non-cancerous effects of TI were mainly affected by inland transport, especially from the southeast, northwest, and west-northwest. The cancerous effects of TI were mainly simultaneously affected by the inland direction and marine direction of transport

    Spring festival and COVID-19 lockdown:disentangling PM sources in major Chinese cities

    No full text
    Responding to the 2020 COVID‐19 outbreak, China imposed an unprecedented lockdown producing reductions in air pollutant emissions. However, the lockdown driven air pollution changes have not been fully quantified. We applied machine learning to quantify the effects of meteorology on surface air quality data in 31 major Chinese cities. The meteorologically normalized NO(2), O(3), and PM(2.5) concentrations changed by −29.5%, +31.2%, and −7.0%, respectively, after the lockdown began. However, part of this effect was also associated with emission changes due to the Chinese Spring Festival, which led to ∼14.1% decrease in NO(2), ∼6.6% increase in O(3) and a mixed effect on PM(2.5) in the studied cities that largely resulted from festival associated fireworks. After decoupling the weather and Spring Festival effects, changes in air quality attributable to the lockdown were much smaller: −15.4%, +24.6%, and −9.7% for NO(2), O(3), and PM(2.5), respectively
    corecore